
Namespace-focused APIs for NDN
NDN-CNL, NTSchema

NDN-CNL: Jeff Thompson, Jeff Burke, Peter Gusev
NTSchema: Xinyu Ma



General APIs for Named Data Apps

• CCNX C: Wire format (~2009)
• CCNX Java: Content object & utility abstractions (~2011)
• CCL / CXX: Interest/data exchange

• Support for schematized trust, name-based access control, etc.
• Descendants such as NDNts: Modern language features

• Consumer/Producer: High-level fetching/publishing patterns
• Socket-like Interface (no relation among sockets)

• Pub-Sub libraries (~2019) 
• Natural extension, treating prefixes as topics

• CNL: Namespace API (~2019)
• Organize async networking via the namespace itself (C++, Python; arbitrary namespaces)
• NTSchema - app framework (Python; static namespaces) 

11/13/20 2

NDN Libraries

ndn-cxx NDN-CCL (JS, 
Java, Python)

NDN-
RTC

Consumer-
producer API *Sync CNLNDN-

Lite
NAC

Low level APIs Higher level APIs



• Align app design with named data design.

• Write data-centric apps without focusing 
on Interest/Data mechanics.

• Compose data-centric approaches: 
segmentation, versioning, compound 
objects, schematized trust and access 
control, pub-sub behavior, etc. 

• Incorporate sync as first-class capability: 
keep high-level namespaces updated and 
enable flexible local operations. 

Objectives

11/13/20 3

foo

someimage

v41 v42 v43

%00%00 %00%01 %00%02



NDN Common Name Library
“NDN-CNL: A Hierarchical Namespace API for [NDN]”, ACM ICN 2019. 

• First realization of a concept; not intended to be the last. 

• In-memory namespace representation maintained by the library for the 
application. 

• API provides consistent manipulation of both app-level objects and data 
packets, and symmetry between producers and consumers.

• Compose and apply handlers to namespace subtrees. 

• Employ only a small set of core features. 

• Minimize loss of generality relative to NDN-CCL
(NT Schema will focus further.)  

11/13/20 4
github.com/named-data/cnl-cpp
github.com/named-data/PyCNL



/foo/someimage
mutable image object (stream) with a “latest version”

/foo/someimage/v42 
an immutable version

/foo/someimage/v42/<segment> 
packet 

foo

someimage

v41 v42 v43

%00%00 %00%01 %00%02

11/13/20 5

Map higher-level abstractions onto prefixes

bar baz ... ... ... 

... 

... ... 

... 



Multiparty Comm. w/Sync
• TCP = two-party communications (usually).

• For NDN, multiparty communications 
about a namespace should be the norm. 

• CNL apps can sync relevant namespaces 
to their preferred depth. 

• App code notified of new names, and then 
handlers for the names decide what to do. 
(How to schematize handlers is challenging: 
NTSchema explores how.) 

• Keeping namespace in-memory allows 
local namespace functions not available 
directly from the network:  enumeration, 
search, etc. 

11/13/20 6

Node 
A

Node 
B

/

img1 img2

/

img1 img3

*sync



Generalized Object Stream
• Stream of general object schema created for our group’s apps. 

• Good use case: versions, sequences, metadata, at two layers.

• Real-time Data Retrieval (RDR) with _latest packet

• Fixed-size Interest pipeline in current impl.

• If timeout, restart with RDR.
Generalized Object Namespace

<seq #>

...

<stream_prefix>

_latest

...

<version #>

<stream_prefix>/<seq#>

_meta _manifest

...

%00%00

...

%00%01

... ...

11/13/20 7



Generalized Object Namespace

<seq #>

...

<stream_prefix>

_latest

...

<version #>

<stream_prefix>/<seq#>

_meta _manifest

...

%00%00

...

%00%01

... ...

CNL’s approach to the Generalized Obj Stream
• Apps manipulate <stream_prefix> or any intermediate child in a local tree of 

names, descending all the way to packet detail for objects whose data is known. 

• Data serialized, cached; new names propagated via sync.  

• For prefix-level data, apps interact with application data structures. For example, 
subclassed from general stream and object handlers. 

• For example, NDN-RTC video stream follows object format and could 
be manipulated by a CNL general handler. 

• Each node can have handlers that follow metadata pointers, 
serialize/deserialize, sign/verify, encrypt/decrypt the children. 

• CNL has an asynchronous
model, with common states 
managed by the library for 
consistency and simplicity.

11/13/20 8



GObjStream Producer
// Above: initialize and select keychain. 

stream = Namespace("/ndn/stream/run/28/annotations", keyChain)

…

handler = GeneralizedObjectStreamHandler(stream)

handler.addObject(Blob(”Payload 1"), "text/html")

handler.addObject(Blob(”Payload 2"), "text/html”)

…

11/13/20 9

Consumer
def onNewObject(seqNumber, contentMetaInfo, objectNamespace):

print("Got seq# " + str(seqNumber) + ": " + 

str(objectNamespace.obj))

GeneralizedObjectStreamHandler(stream, 10, onNewObject).objectNeeded()



11/13/20 10

TouchNDN

github.com/remap/TouchNDN



Challenges / Future work
• Dynamic namespaces make things complicated
• Need some protobuf / versec style of formalizing / sharing 

namespace schema.  

• Composability is easier to describe than implement
• Developer-level configuration of details not schematized

• NTSchema attempts to address this, with some simplifications
• Static / well-known namespace
• No sync yet

11/13/20 11

Thompson et al. “NDN-CNL: A 
Hierarchical Namespace API for 
[NDN]”, ACM ICN 2019. 

github.com/named-data/cnl-cpp
github.com/named-data/PyCNL



Thank you!
jburke@remap.ucla.edu


