
npChat Application Design and
Pub-Sub

Lan Wang, Jeremy Clark, Ashlesh Gawande
University of Memphis

ACM ICN 2020 Tutorial

● Share multimedia with friends
● Discover new users to add to their

friends list
● Establish trust based on real-life

models (meeting in person,
organizational, mutual friends)

● Control who has access to their data

npChat: Decentralized Social Media App [1]

[1] A. Gawande, J. Clark, D. Coomes, L. Wang, "Decentralized and Secure Multimedia Sharing Application over
Named Data Networking," in Proceedings of ACM Conference on Information-Centric Networking, Sept. 2019 2

3

Design Requirements

No central entity No single user
directory

No special
infrastructure

No single trust
anchor

User control of
data

● Name data
● Discover npChat users and become friends
● Publish and fetch data, including certificates, and validate data
● Encrypt and decrypt data
● Learn about new data (PSync’s pub-sub API)

Design Elements

4

Name Space

5

/AliceDoe/npChat/alicedoe123 /edu/memphis/BobSmith/npChat/bobsmith321

Alice Bob

No single application namespace. Each user uses his/her own namespace.

Public/Private Key as Security Identity

● npChat generates a public/private key pair under user’s name
space
○ Alice’s npChat name space: /AliceDoe/npChat/alicedoe123/
○ Public key name: /AliceDoe/npChat/alicedoe123/KEY/<key-id>

● The public key is self-signed and encoded into a QR code.

● The user can obtain a certificate of his/her public key from
○ a trust anchor associated with the user’s name space
○ any friend

● Users obtain each other’s certificate to establish trust
relationship.

6

<user-prefix>

metadata file keysfriends-list KEY

File name

Access Control
Information

<file-name>

<version #>

<seg #>

<key-name>

<friend-name>

<user-name>

Segmented
Data

Content Key
for EncryptionFriends List

User’s Public
Key

<key-id>

Data

<seq #> <version #>

certs

<cert-name>

Certificate

Name Tree

7

Trust Model

8

Meeting in Person Mutual FriendsHierarchical/
Same Organization

9

Becoming Friends via Scanning Certificates

B A

Alice Bob

CertB(KeyA)

Interest for
CertB(KeyA)
Interest for
CertA(KeyB)
CertA(KeyB)

Fetch content
keys

A B

Alice and Bob
meet in
person and
want to
become
friends on
npChat.

Discovering Users on Local Network through Multicast

npChat discovers
currently active
users in the local
network via
multicast
discovery
interests.

10

Publishing and Subscribing to Feeds

npChat uses PSync’s pub-sub API [2] to publish and subscribe to friends’ feeds.
● Invertible Bloom Filter (IBF) encodes names published by a producer.
● Full Sync API and Partial Sync (Pub-Sub) API

Each npChat instance subscribes to three prefixes for each friend:
● /metadata – information about newly published content
● /friends – user’s friends list
● /keys – content keys used to encrypt media intended for that user’s friends.

[2] M. Zhang, V. Lehman, L. Wang, "Scalable Name-based Data Synchronization for
Named Data Networking," in Proceedings of the IEEE INFOCOM 2017, May 2017

11

PSync Pub-Sub Consumer

Bob as consumer of Alice’s feeds:

consumer = new PSync.Consumer(aliceSyncPrefix, helloDataCallback,
syncDataCallback, bFilCount, falsePositive);

On hello data callback, Bob subscribes to Alice’s feeds (prefixes) and begins sending sync interest.

for (String prefix : prefixes) {
consumer.addSubscription(prefix);

}
consumer.sendSyncInterest();

On sync data callback, consumer handles according to app specification, e.g., fetch metadata, friends list, keys.

12

PSync Pub-Sub Producer

Alice creates a producer:

producer = new PSync.PartialProducer(expectedNumEntries, aliceSyncPrefix,
“/AliceDoe/npChat/alicedoe123”,
helloReplyFreshness, syncReplyFreshness);

When Alice wants to share a new photo /AliceDoe/npChat/alicedoe123/file/mycat, she creates a metadata object
that contains the new photo’s name and which friends can access the photo.

producer.publishName(“/AliceDoe/npChat/alicedoe123/metadata”, 56);

This publishes /AliceDoe/npChat/alicedoe123/metadata/56.

Subscribed consumers, e.g., Bob, get notification of the new metadata name, retrieve the metadata, and then
retrieve the photo and the corresponding content key.

13

Publishing a Photo

Alice publishes a photo with NDN-CNL:
Namespace objectPrefix("/AliceDoe/npChat/alicedoe123/file/mycat", &keyChain);

objectPrefix.setFace (&face, const ptr_lib::shared_ptr<const Name>&prefix);

SegmentedObjectHandler().setObject(objectPrefix, Blob(signed_certificate));

14

Bob fetches Alice’s photo with NDN-CNL.

Namespace objectPrefix(“/AliceDoe/npChat/alicedoe123/file/mycat”);

objectPrefix.setFace(&face);

auto onObject = [&](const ptr_lib::shared_ptr<ContentMetaInfoObject>&

contentMetaInfo, Namespace& objectNamespace)

{

//Handle received photo

};

SegmentedObjectHandler(&objectPrefix, onObject).objectNeeded();

Fetching and Validating Data

15

Demo

https://www.youtube.com/watch?v=KsfKVGUGDUY

Ashlesh Jeremy Nexus 16

https://www.youtube.com/watch?v=KsfKVGUGDUY

Thanks!
Questions?

lanwang@memphis.edu

17

https://github.com/named-data-mobile/ndn-photo-app

