

MICOM

- Identify communication challenges in tactical networks
- Introduce Named Data Networking (NDN)
- Apply NDN to example applications in a notional tactical environment
 - Namespace design
 - Resilient forwarding
 - Data-centric security design
 - Dataset synchronization and support for pub-sub paradigm
 - Integration challenges

Military Communications for the 21st Century
November 12-14, 2019 • Norfolk, VA, USA
Defining Multi-Domain Command and Control

2:00pm Lixia: NDN overview

2:40pm Alex: naming, security in tactical networks

3:30pm: 15min break

3:45pm Lixia: pub-sub, sync

4:00pm Tamer: In-network processing/edge computing prioritize caches, forwarding strategies

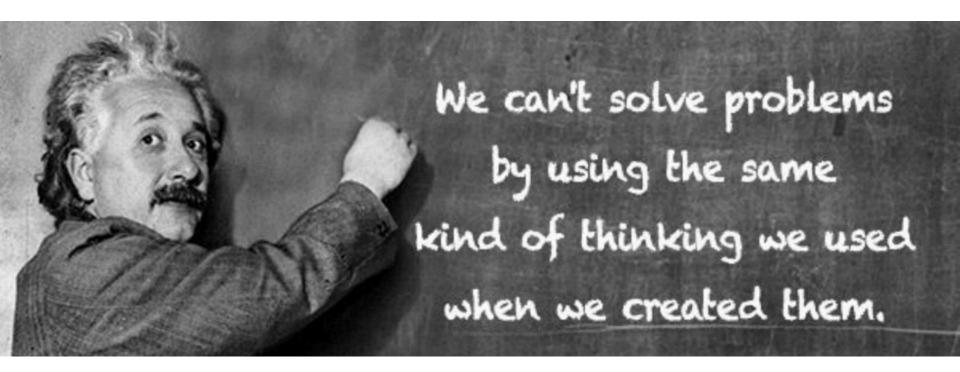
4:30pm wrapping up

Alex: Code base and NDN resources available

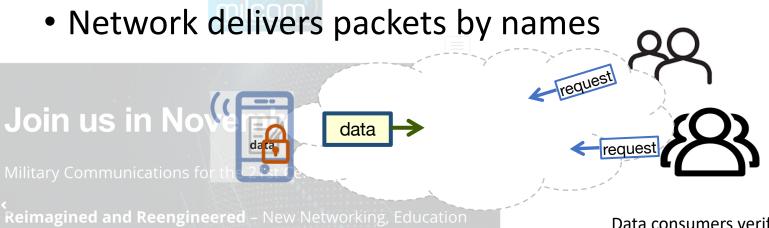
Q & A

MICOM

A fresh look at networking



 What a network does: deliver bits → enabling communication between any/all parties


- How IP accomplishes this: point-to-point packet delivery, A—to—B
 - network = collection of links between adjacent nodes
 - find a path by chaining together a set of nodes and links between A—B
 - Packets flow through the pipe while all the nodes between A—B connected and operational
- Issues: nodes move, links fail, connectivity changes

- Delivering desired bags of bits to all the parties who need them - Named Data Networking
- Data producers generate named, secured data packets
 - Name data objects by application layer names e.g. https://events.afcea.org/MILCOM19/Public/enter.aspx
- Consumers request desired data by names

Data consumers verify

IP data delivery by addresses

milcom

Military Communications for the 21st Century

November 12-14, 2019 • Norfolk, VA, USA

Defining My buffer is used only for temporary queueing, I remove each packet as soon as it goes to its destination

IP data packet

VERS	LEN	TYPE OF SERVICE	TOTAL LENGTH				
IDENT			FLAGS	FRAGMENT OFFSET			
TIME		PROTOCOL	HEADER CHECKSUM				
SOURCE IP ADDRESS							
DESTINATION IP ADDRESS							
	PADDING						
DATA							

Named, secured data/ In-network-caching Military Communications for the 21st Century November 12-14, 2019 • Norfolk, VA, USA

November 12-14. 2019 • Norfolk. VA. USA

to its destination

Defining My buffer is used only for temporary queueing, I remove each packet as soon as it goes

IP data packet

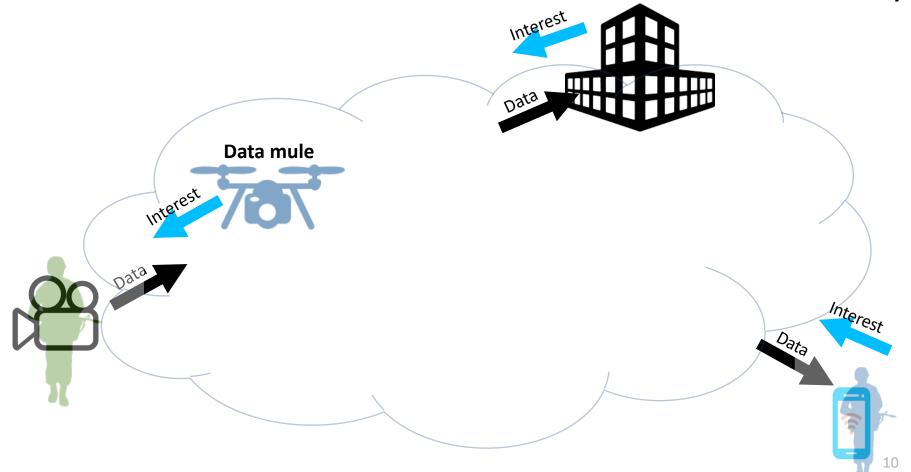
VERS	LEN	TYPE OF SERVICE	TOTAL LENGTH				
IDENT			FLAGS	FRAGMENT OFFSET			
TIME		PROTOCOL	HEADER CHECKSUM				
SOURCE IP ADDRESS							
DESTINATION IP ADDRESS							
OPTIONS					PADDING .		
DATA							

buffer

application data name a few pieces of metainfo

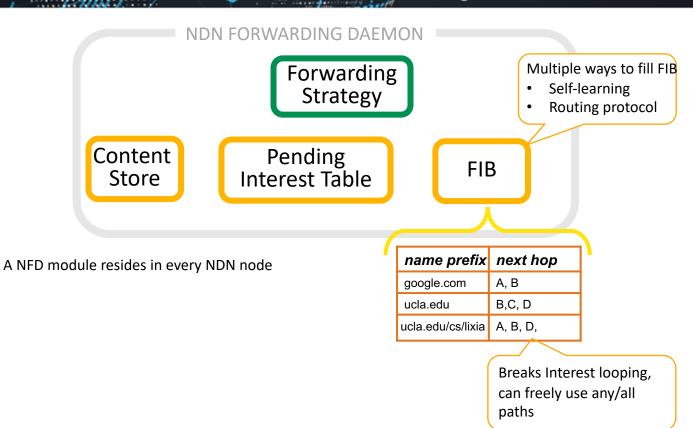
data

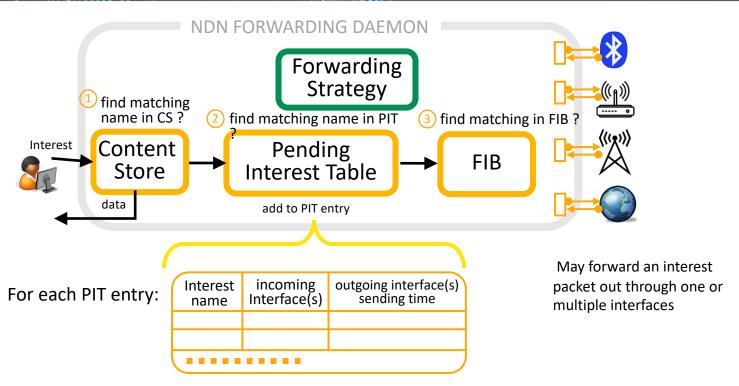
crypto signature


Each packet stands on its own, not for specific node, so I can buffer it as long as feasible

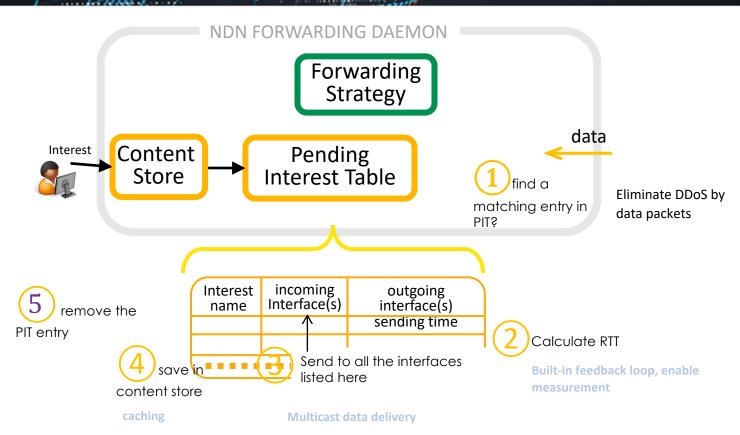
Named, secured data enables data muling

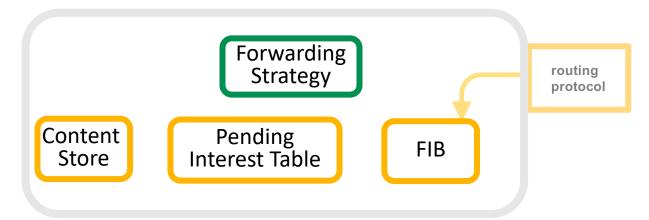
Effective communication in face of intermittent connectivity




MICOM

NDN's node model





NDN Interest Forwarding

NDN Data Packet forwarding

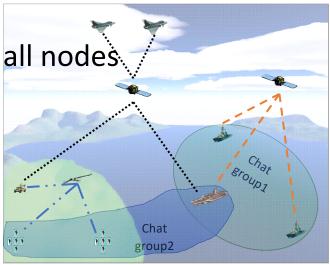
- Forwarding Strategy makes interest forwarding decisions by taking input from
 - FIB
 - measurement from Interest-data exchange (and any other local resource information)
 - Per-namespace forwarding policies

Resilient data availability means

Military Communications for the 21st Century
November 12-14, 2019 • Norfolk, VA, USA
Defining Multi-Domain Command and Control

- Host multihoming
- Multicast delivery
- Pervasive in-network storage
- Delay/disruption tolerance
- Multipath forwarding

- Can be addressed by IP-based solutions
- Solving each in isolation by amending TCP/IP with special tweaks

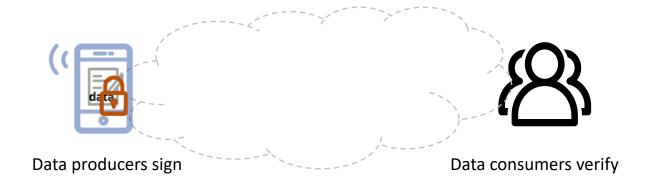

All the above lead to redundant means to get data

NDN: making data itself identifiable, independent from its containers or channels

this requires that data be secured directly

How we secure. MICOM communication today (liltary Communications for the 21st Century Defining Multi-Domain Command and Control

- Encrypting point-to-point channels
 - TLS
 - QUIC
- Assumptions
 - synchronized connectivity between two communicating ends
 - All CAs' crypto keys configured into all nodes.
- Battlefields need support for delay and disruption tolerant (asynchronous) communications
 - No centralized CAs


How NDN secures communications

- The NDN design mandates that all Data packets are secured at the time of production
 - Signed
 - Encrypted as needed
 - Interest packets can be secured as needed
- Enabling secure communication independent from data containers or underlying communication channels

NDN enables end-toend data security

End-to-end data authenticity

independent from intermediate communication channels, middle boxes, intermittent connectivity

NDN enables end-toend data security

End-to-end data authenticity

independent from intermediate communication channels, middle boxes, intermittent connectivity

Security bootstrapping:

- installing trust anchor(s) into all entities
- All data producing entities receive crypto certificates

Network security is conceptually simple

- Data authenticity

 Signing (verifying) produced (received) data
 - NDN mandates data authentication
- - NDN supports name & attribute-based encryption
- Data availability → via redundancy
 - Maintaining multiple copies
 - Trying multiple paths

native properties built into the NDN forwarding plane

The real security challenges

Trust management

- Today: through centralized commercial ce services
- NDN's approach to trust management
 - Start with local trust anchors
 - UCLA as the trust anchor for all UCLA controlled business
 - Establish relations among trust anchors

(adopted from "SDSI - A Simple Distributed Security Infrastructure") https://people.csail.mit.edu/rivest/sdsi10.html

Usability

- Comprehensive trust policy configurations
- Automated crypto key management

Addressing crypto usability challenges

- Easy access to crypto keys and trust policies: they are all named, secured data packets
 - Can be fetched by anyone as needed
- Establishing naming conventions for keys and policies
- Naming keys in a way to simplify the definition of security policies via the relations between names of keys and their permitted actions
 - trust schema, see reference 3
 - Automated key generation and distribution for content encryption/decryption
 - name-based access control, with attribute-based encryption, reference 4

- A new way to communicate: requesting named data
 - without needing network addresses
- Fetching named data at network layer is
 - Demanded by new apps and network scenarios
 - enabled by technology advances
- Networking by app defined data names enables NDN
 - Securing data directly

 remove dependency on intermediaries
 - Using semantic names of data & keys to reason security policies, automate crypto management and operations
 - Increasing data availability via
 - host multihoming, multipath forwarding, multicast delivery, in-network storage to support delay/disruption tolerance

- An Overview of Security Support in Named Data
 Networking, IEEE Communications Magazine, November 2018.
- 2. Opportunities and Challenges for Named Data
 Networking to Increase the Agility of Military Coalitions
 Proceedings of Workshop on Distributed Analytics
 Infrastructure and Algorithms for Multi-Organization
 Federations (DAIS), 2017.
- 3. <u>Schematizing Trust in Named Data Networking</u>, ACM Information Centric Networking Conference 2015
- 4. NAC: Automating Access Control via Named Data, IEEE MILCOM 2018