
Experimenting with NDN Apps
using Mini-NDN
NDN Tutorial – ACM ICN 2016

September 26th, 2016, Kyoto, Japan

Davide Pesavento
Pierre and Marie Curie University, Paris, France

https://named-data.net/icn2016-tutorial



Overview
• Mini-NDN	provides	a	network	emulation	environment	for	NDN	

experimentation
• A	full	NDN	network	can	be	run	on	a	single	system	(laptop,	server,	etc.)
• Each	node	in	the	network	can	run	forwarding,	routing,	and	NDN	

applications
• Independent	of	changes	in	NDN	platform
• NDN	experiments	can	be	performed	more	easily	and	much	quicker	than	

previously	used	tools

29/26/16 NDN	Tutorial	– ACM	ICN	2016



Mininet
• A	popular	network	emulation	tool

– Process-based	virtualization	(containers);	abstracts	a	single	host	as	multiple	
nodes	in	a	network

• Easy-to-use	API	to	build	desired	networks
– Nodes	run	as	bash	process	inside	Linux	network	namespaces	(netns)
– Links	are	virtual	Ethernet	pairs	(veth)

• Provides	tools	to	configure	CPU	and	memory	allocation	for	each	node
• Can	be	installed	on	a	VM	(official	images	based	on	Ubuntu	are	provided),	

or	natively	using	distro packages	or	Mininet install	script

http://mininet.org/
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet

39/26/16 NDN	Tutorial	– ACM	ICN	2016



Mini-NDN
• Enables	NDN	research	on	top	of	Mininet
• Mini-NDN	loads	a	user	defined	topology	file	to	configure	a	network	and	

runs	NFD+NLSR	on	each	node
• Topology	file	can	be	used	to	configure	static	routes
• A	GUI	tool	(MinindnEdit – an	extension	of	MininetEdit)	is	provided	to	help	

generate	the	topology	file

https://github.com/named-data/mini-ndn

49/26/16 NDN	Tutorial	– ACM	ICN	2016



Mini-NDN

59/26/16 NDN	Tutorial	– ACM	ICN	2016



Running	NFD	on	each	node
• Need	to	run	multiple	copies	of	NFD	on	one	system

– NO	mount	namespaces
– Use	a	different	home	folder	for	each	NFD	instance:

• /tmp/<nodename>

– Use	different	socket	file	for	each	NFD	instance	in	nfd.conf
– Add	the	socket	file	path	to	client.conf used	by	NDN	
applications

69/26/16 NDN	Tutorial	– ACM	ICN	2016



Scalability
• Since	Mini-NDN	runs	multiple	instances	of	NFD	and	NLSR,	

scalability	depends	on	the	number	of	CPUs	available
• The	more	CPU	available	to	the	processes,	the	better	the	

results
• For	example,	an	8-core	machine	is	able	to	scale	to	100	nodes	

with	decent	traffic	(say	each	node	pinging	10	other	nodes)
• Ongoing	work	to	improve	scalability

79/26/16 NDN	Tutorial	– ACM	ICN	2016



Comparison	with	other	tools
• ndnSIM

– ndnSIM	scales	better	than	Mini-NDN
– Applications	require	porting	to	run	on	ndnSIM
– ndnSIM	uses	discrete	time	steps;	applications	may	run	differently	from	real	world
– Mini-NDN	allows	for	applications	with	user	interaction	(e.g.	GUI)

• Virtual	machines,	Vagrant,	Docker,	…
– VMs	need	more	resources
– Requires	scripts	to	setup	networking
– Manual	NFD	and	NLSR	configuration,	or	need	to	write	a	script	to	automate	the	process
– No	central	controller	– experiments	require	synchronization

• Testbed
– Requires	to	maintain	up-to-date	images
– Slower	to	boot/restart
– Scales	poorly
– Resources	may	not	be	available

89/26/16 NDN	Tutorial	– ACM	ICN	2016



Experiment	workflow	(demo)
1. Create	topology	file
2. Write	experiment	class
3. Start	experiment

§ sudo minindn <topology> --experiment=<expname>

4. (optionally)	Interact	with	the	emulated	network
5. Collect/process	results

§ By	default,	logs	produced	by	one	node	are	written	to	that	node’s	home	
directory	(/tmp/<nodename>)

§ Otherwise,	use	absolute	paths

99/26/16 NDN	Tutorial	– ACM	ICN	2016



109/26/16 NDN	Tutorial	– ACM	ICN	2016



class TutorialExperiment(Experiment):
def __init__(self, args):

Experiment.__init__(self, args)

def run(self):
for host in self.net.hosts:

host.cmd(“nfd-status > nfd-status.out &”)

Experiment.register(“tutorial”, TutorialExperiment)

119/26/16 NDN	Tutorial	– ACM	ICN	2016


