
DEMO
Cloud-optional Home IoT w/NDN

UCLA IRL

8

9

Figure 1: typical cloud-centric IoT architecture

Motivation

• Basic idea for today:
Avoid unnecessary cloud
dependence!
• Cannot add devices or authorize

users when cloud is inaccessible.
• Additional delay even if command

issuers and target devices reside
on the same local network.

• Unnecessary data exposure from
the local network to the external
parties may lead to security and
privacy issues.

10

[1] Shang, Wentao, et al. "Breaking out of the cloud: local trust management and rendezvous in named data
networking of things." Internet-of-Things Design and Implementation (IoTDI), 2017 IEEE/ACM Second
International Conference on. IEEE, 2017.

• NDN primitives already provide benefits to IoT systems,
we will demonstrate that here.

• IOTDI ‘16 and ‘17 papers discuss building higher-level functionality.

NDN-based Home IoT

• Authentication Server (AS)
• Serves as the trust root within this home network and a local CA
• Be responsible to add devices and authorize users
• May be a control hub, home router or smart phone owned by the owner of this

home network.

• Devices
• Resource producers and / or command handlers

• Temperature sensors, camera monitors, light controllers, etc.
• Resource consumers and / or command issuers

• Smart phones, latptops, etc., 11

device

device

device

authentication
server Establish trust relationship

Discover services

Automatically

NDN-based Home IoT

• Key benefits “out of the box” from NDN
• Schematized trust management

• All data signed, no perimeter security required, though it can be implemented based on
data naming.

• Completely local management breaks the dependencies on Clouds
• Hand over to external parties (i.e. CA in the cloud) smoothly whenever required

• Data-centric and consumer-driven communication
• Forget about where they are and how to reach them
• Focus on what you want and how to get them

• Cross-layer protocol stack and rich tools simplify network configuration 12

device

device

device

authentication
server Establish trust relationship

Discover services

Automatically

Bootstrap: A few steps to join NDN-based Home IoT

• Basic assumptions
• Each device has a physical connectivity to the authentication server

• e.g., Ethernet, ad-hoc wifi, etc
• Each device has an unique ID (at least locally) and keeps it as secret

• Maybe a barcode set by its manufacturer, or a pin code assigned by the
owner of this Home network

• There is an out-of–bound way to share device’s secret to the
authentication server
• e.g., scan the barcode or enter the pin code

• High level bootstrap process
• The owner gives the ID of a new device to the AS
• Authentication server initiates the bootstrap by probing for the device

• Secure the process by a secret shared from the target device
• The device applies generates a key-pair and asks AS to sign it

• AS will sign and reply with the signing certificate first
• The device sets trust anchor and requests the signed certificate 13

Demo

• Implementations
• C++
• Ndn-cxx
• NFD runs separately

• Basic configurations
• A laptop acts as the AS (/shannon/as)
• 2 Raspberry Pi emulates temperature sensors

• /temp-sensor/pi1
• /temp-sensor/pi2

• Another laptop acts as the consumer who is interested in temperatures
• /alice/macbook

• What to demonstrate
• The bootstrap process that enable devices join the trusted network
• The auto-discover process that help devices find out services in network 14

Bootstrap: enable devices join the trusted network
step 1 --- AS probes the device

15

AS initiates trust establishment
by probing a new device, the
probe is secured by the shared
secret

/shannon/temp-sensor/pi1
Interest: /localhop/probe-device/[as name][Hmac Sig]

/shannon/as

16

device will reply with its name and
accessible URIs once it can verify
the probe request. This reply is
also secured by shared secret

AS initiates trust establishment
by probing a new device, the
probe is secured by the shared
secret

Bootstrap: enable devices join the trusted network
step 1 --- as probes the device

/shannon/temp-sensor/pi1
Interest: /localhop/probe-device/[as name][Hmac Sig]

/shannon/as

Data: /localhop/probe-device/[as name]/[Hmac Sig]/[V]

(content: device name, /shannon/temp-sensor/pi1)

(signature: HMAC signature)

HMAC verification

17

device will reply with its name and
accessible URIs once it can verify
the probe request. This reply is
also secured by shared secret

Bootstrap: enable devices join the trusted network
step 2 --- device applies for as-signed certificate

/shannon/temp-sensor/pi1
Interest: /localhop/probe-device/[as name][Hmac Sig]

/shannon/as

Data: /localhop/probe-device/[as name]/[Hmac Sig]/[V]

(content: device name, /shannon/temp-sensor/pi1)

(signature: HMAC signature)

HMAC verification

HMAC verification

Interest: /shannon/as/apply-cert/shannon/temp-sensor/pi1 [key-info][Hmac Sig]
after verifying the reply, AS will
register the device’s name to the
local forwarding daemon to get
ready for the device’s Interests device register AS’s name to the local

forwarding daemon, and then creates
a key-pair and send out a request for
signed certificate to AS

18

Bootstrap: enable devices join the trusted network
step 2 --- device applies for as-signed certificate

/shannon/temp-sensor/pi1
Interest: /localhop/probe-device/[as name][Hmac Sig]

/shannon/as

Data: /localhop/probe-device/[as name]/[Hmac Sig]/[V]

(content: device name, /shannon/temp-sensor/pi1)

(signature: HMAC signature)

HMAC verification

HMAC verification

Interest: /shannon/as/apply-cert/shannon/temp-sensor/pi1 [key-info][Hmac Sig]

Data: /shannon/as/apply-cert/shannon/temp-sensor/pi1/xxxx/[V]
(content: trust anchor, i.e., cert of as-key)(signature: HMAC signature)

HMAC verification

HMAC verification

after verifying the reply, AS will
register the device’s name to the
local forwarding daemon to get
ready for the device’s Interests device register AS’s name to the local

forwarding daemon, and then creates
a key-pair and send out a request for
signed certificate to AS

after verifying the request, AS will
sign device’s public key dev-key
with its own key as-key. Then
send the certificate of as-key to
the device

verify the received certificate and
then set it as the trust anchor

19

Bootstrap: enable devices join the trusted network
step 3 --- device requests for the as-signed certificate

after verifying the request, AS will
sign device’s public key dev-key
with its own key as-key. Then
send the certificate of as-key to
the device

/shannon/temp-sensor/pi1
Interest: /localhop/probe-device/[as name][Hmac Sig]

/shannon/as

Data: /localhop/probe-device/[as name]/[Hmac Sig]/[V]

(content: device name, /shannon/temp-sensor/pi1)

(signature: HMAC signature)

HMAC verification

HMAC verification

Interest: /shannon/as/apply-cert/shannon/temp-sensor/pi1 [key-info][Hmac Sig]

Data: /shannon/as/apply-cert/shannon/temp-sensor/pi1/xxxx/[V]
(content: trust anchor, i.e., cert of as-key)(signature: HMAC signature)

HMAC verification

HMAC verification

Interest: /shannon/temp-sensor/pi1/KEY/[k-id]

Data: /shannon/temp-sensor/pi1/KEY/[k-id]/ID-CERT/[c-id]/[V]
(signature: sign by as-key)

express a regular interest to ask for
the signed certificate of dev-key

Auto-discovery: discovery neighbors and surrounding services

• Pre-conditions
• A device will not be able to discovery unless the Bootstrap is done
• A device can reach potential targets physically (directly or via the AS)

• Device/Service discovery
• A device initiates one discovery by probing its neighbors

• Automatically triggered after bootstrap (proactive)
• Secured by the AS-signed certificate
• With its own name embedded to enable reactive discovery

• Any receiver reply the probe Interest if it’s verifiable
• Reply with its routable name
• Reply with all accessible services (identified by names)

20

Producers reply to trusted discovery requests
with names and services

21

What services
are there?

/alice/mackbook

/temp-sensor/pi1

/temp-sensor/pi2

/shannon/as

Temperatures
record

Temperatures
record

Authorization
and certificates

temp-sensor

consumer

temp-sensor

authentication
server

Q&A

22

Open mHealth

UCLA IRL / REMAP

23

Open mHealth: Motivation

24
Prakash, R. Adoption of block-chain to enable the scalability and adoption of Accountable Care. 2016.
http://www.hhs.gov/about/news/2016/08/29/onc-announces-blockchain-challenge-winners.html

Open mHealth

• Follow-up to participatory sensing work
• Ecosystem for health data sharing
• Leverages everyday mobile devices
• Defines data exchange as the “thin waist”
• Features user-controlled and privacy-aware data exchange

• Limitations of TCP/IP-based Open mHealth
• Architecture out-of-sync with the vision of the app
• (Administratively) centralized approach to data management: A resource

server manages data point resources
• Connection-based security managed by services

25

[1] D. Estrin and I. Sim. Open mHealth architecture: an engine for health care innovation.
Science, 330(6005):759-760, 2010. Also, http://openmhealth.org.

NDN CITE GOES HERE

Why use NDN for Open mHealth?

NDN and Open mHealth share
data exchange as the “thin
waist” – one at app level, one at
network level.

- Intuition: NDN should be a
better fit.

Also, model of securing data
close to capture particularly
useful for a “ecosystem” with
many actors.

26Sim & Estrin, 2010

Objectives

• Limitations of TCP/IP-based Open mHealth
• Architecture out-of-sync with the vision of the app
• (Administratively) centralized approach to data management:

A resource server manages data point resources
• Connection-based security managed by services

• Ecosystem for health data sharing
• Leverages everyday mobile devices
• Defines data exchange as the “thin waist”
• Features user-controlled and privacy-aware data exchange

27

Demonstration

• NDNFit, example distributed system of (mobile) data gathering,
processing, and visualization using schematized trust and name-
based access control.

• Running on:
• Android handset. (NDN-Android, jNDN)
• Storage node. (ndn-cxx)
• Processing node. (PyNDN2)
• Visualization applications. (NDN-JS)
• Connecting via the NDN testbed.

• We’ll just talk about the namespace, then show the demo.

28

Namespace Design Goals

• Name data from health application perspective
• Prefix to identify the data ecosystem
• Component to identify the data owner
• Components to classify data into different types
• Fundamental types include time-series location traces

• Make common data requests using only Interest-Data
exchange

• Authenticity of health data is critical: reflect the trust
relationships between different components

• Health data is highly private: enable users to control access
to their their data without relying on third party services

29

Namespace

30

/org/openmhealth

<user-id> <service-id>(DPU, DVU)KEY

ksk-<timestamp> KEY

SAMPLEREAD

fitness

Physical_activity

D-KEY E-KEYfitness

Physical_activity D-KEY E-KEY

D-KEY E-KEY

<start_timestamp_hour> <start_timestamp_hour>

<end_timestamp_hour> <end_timestamp_hour>

FOR

<consumer-cert>

DECRYPTION KEY
ENCRYPTED BY

ENCRYPTION KEY

time_location bout

<timestamp> catalog C-KEY

<segment>(opt.)

DATA OBJECT

<timestamp>

DATA OBJECT

<start_timestamp_hour>

<end_timestamp_hour>

<E-KEY name>

SYM KEY
ENCRYPTED

BY E-KEY

time_location D-KEY E-KEY

…

… …

……

FOR

<user-id> or
<service-id>

ID-CERT

<version>

ksk-<timestamp>

ID-CERT

<version>

<app-id>

ksk-<timestamp>

ID-CERT
<version>

Identify the
ecosystem

Trust anchor

User and
component
identifiers

Certs issued to
users and services

Certs issued to
apps

Data
types

Raw data
and catalogs

Access
control

Key pairs

Identity and trust model

• Design goal: making trust of the data inherent in the
data itself, as opposed to tied to service or connection

• Trust model definition
• Uses schematized trust1: defines application trust via a set of

relationships between data names and key names

• Open mHealth trust model
• User as the root of trust for her/his own health data.
• Hierarchical for the user’s data; probably more complex for

relationships among users.
• A hierarchical trust model fits well for the pilot NDNFit’s

context, e.g user -> app-> data.

31
[1] Y. Yu, A. Afanasyev, D. Clark, V. Jacobson, L. Zhang, et al. Schematizing Trust in Named Data
Networking. In Proceedings of the 2nd Conference on Information-Centric Networking. ACM, 2015.

Trust in NDNFit

32

Hierarchical trust
model for
captured data

Mobile “identity
manager” app manages
user identities, enables
their selection by the
user.

/org/openmhealth (the trust anchor)

/org/openmhealth/<user-id> (a user)

/org/openmhealth/<user-id>/<app-id> (an app)

/org/openmhealth/<user-id>/<data-prefix> (data packet)
sign

sign

sign

Access control

• Problem: OAuth-style authentication is a significant pain point in
current Open mHealth
• Requires more federation than reasonable or desirable
• Desire to create processing chains DSU->DPU->DPU->DVU

• Design goals:
• Achieving access control independent of how data is exchanged
• Enabling user-defined access control granularity

• Name-based access control (NAC)1 developed with NDNFit as a
use case
• Data is encrypted at generation time, instead of only when it is

transmitted
• Authorization manager (controlled by the owner) grants components

access to owner’s data by properly naming, signing, and encrypting keys

33
[1] Y. Yu, A. Afanasyev, and L. Zhang, “Name-Based Access Control,” Named Data
Networking Project, Technical Report NDN-0034, October 2015.

public key private key

KDKKEK

C-KEY

DATA

consumption credential key pair

consumer’s key pair

data encryption key pair (symmetric key)

NAC in NDNFit

34

Authorization manager
(on behalf of users)

Capture app
(data producer)

DVU or DPU
(data consumer)

KEK KDK

Public Key

Private Key
Data
MAU

C-KEY

Data

KDK

C-KEY

Consumption credential (KEK/KDK) provides one level of indirection

Q & A

35

