

### NDN: a new way to build networks



- Why we need a new way
- What is the new way
- How this new way is inherently more secure & resilient than the existing TCP/IP network architecture

## TCP/IP: a revolution to communication (40 years ago)



- Telecom: setting up a circuit first
- From circuit to packet switching
  - "It was this need for survivability of communications that required plodding through new ground not previously explored."
    - Paul Baran, 1977
- Packet switching: computers as switches
  - Enabling one to send data packets without setting up a circuit first
  - Enabled by technology advances

#### TCP/IP: building a resilient network infrastructure





- Point-to-point datagram delivery
  - The same communication model as telecom
  - IP addresses identify network attachment points
- Communication through the infrastructure is orders of magnitude more resilient due to dynamic routing

## 40 years passed, technologymicom ideal advanced again (by a lot) Military Communications for the 21st Century October 29-31, 2018 · LAX Marriott, Los Angeles, CA

(IP-based Infrastructure communication succeeded beyond the wildest dreams)

- Today: (ad hoc) mobile wireless communications
  - Hand-held devices, drones, ships, aircrafts
  - Each may possess multiple interfaces
- Applications have changed too
- Mobiles and large number of IoT devices have made it increasingly difficult to achieve communication resiliency by shooting packets to specific IP addresses



https://www.youtube.com/watch?v=oCZMoY3q2uM

#### What's the new way:



 IP delivers packets to hosts based on numeric IP addresses



 Named Data Networking fetches data by using application data object names



- Example data names
  - www.nist.gov/document/ndn agendav5docx
  - www.youtube.com/watch?v=o CZMoY3q2uM
    - Large objects fragmented to multiple packets, each fragment uniquely named



Military Communications for the 21st Century

#### A conceptually simple change







#### NDN: two types of network layer packets



#### application data name

(may carry a few optional parameters)

Consumer requests data by sending Interest packet

#### application data name

a few pieces of metainfo

data

crypto signature

Producer binds name to content to create **Data packet** 

#### Named data enables securing data directly



application data name

a few pieces of metainfo

data

crypto signature

The signature binds the name and content at data production time

### Named data enables host multihoming





- IP assigns address to each interface, switching between interfaces leads to address change
- Data name is independent from interface, can freely use any or all of the interfaces

### Named, secured data enables in-network caching



Military Communications for the 21st Century October 29-31, 2018 • LAX Marriott, Los Angeles, CA



### Named data enables data muling at network-layer







#### NDN's node model



NDN FORWARDING DAEMON

Forwarding Strategy

Multiple ways to fill FIB

- Self-learning
- Routing protocol

Content Store

Pending Interest Table

FIB

NFD module resides in every NDN node

| name prefix       | next hop |
|-------------------|----------|
| google.com        | A, B     |
| ucla.edu          | B,C, D   |
| ucla.edu/cs/lixia | A, B, D, |

PIT breaks Interest looping, enable NDN to freely use multiple paths

#### NDN Interest Forwarding





#### NDN Data Packet forwarding





#### Forwarding Strategy





- Forwarding Strategy makes interest forwarding decisions by taking input from
  - FIB
  - measurement from Interest-data exchange (and any other local resource information)
  - Per-namespace forwarding policies

### Resilient data availability means



- Host multihoming
- Pervasive in-network storage
- Delay/disruption tolerance
- Multipath forwarding
- Multicast delivery

- All the above lead to redundant means to get data
- Enabled by making data itself identifiable independent from containers or channels



## Howe we secure communication today



- Encrypting point-to-point channels
  - TLS
  - QUIC

 Running over IP, requiring synchronized connectivity between the two communicating ends

 Battlefields need support for delay/disruption tolerant communications



# NDN builds security into micom (data) packets (data) packets (data) packets

- Independent from data containers or communication channels
- Data packets are sealed at production
- Interest packets can be authenticated as well

#### NDN enables end-to-end data security





#### **End-to-end data authenticity**

independent from intermediate communication channels, middle boxes, intermittent connectivity

#### End-to-end data security





- Requiring security bootstrapping: installing trust anchor(s) into all entities in an NDN network
- Requiring every data producing entity possess cryptographic key(s)
- Requiring efficient signing and verification for resource constrained devices

### Designing security building micom block into the narrow waist Military Communications for the 21st Century October 29-31, 2018 • LAX Marriott, Los Angeles, CA

#### Network security is conceptually simple:

- Data authenticity 

   Signing/verifying received data
  - NDN mandates data authentication
- - NDN supports name/attribute-based encryption
- Data availability → via redundancy
  - Making multiple copies
  - Trying multiple paths
  - Native properties of the forwarding plane

## The real security challenges



- Trust management
  - Today: through commercial certificate authority services
  - NDN's approach to trust management
    - Start with local trust anchors
      - UCLA as the trust anchor for all UCLA controlled business
    - Establish relations among trust anchors
       Similar to "SDSI A Simple Distributed Security Infrastructure <a href="https://people.csail.mit.edu/rivest/sdsi10.html">https://people.csail.mit.edu/rivest/sdsi10.html</a>
- Usability
  - Comprehensive trust policy configurations
  - Automated crypto key management

### Addressing crypto usability challenges



- Crypto keys and trust policies are all named, secured data
  - They can be fetched by anyone as needed
- Establish well known naming conventions
  - Enable one to construct the names for desired keys and policies
  - Facilitate the definition of security policies through defining the relations between the names of keys and their permitted actions on data (trust schema, see reference 3)
- Automating crypto key management
  - Certificate issuance
  - Automated key generation and distribution for content encryption/decryption (name-based access control, reference 4)
    - Developed solutions for attribute-based encryption

The above concepts will be illustrated in the chat and PLI apps

#### Takeaway,



- One can communicate by requesting named data, without needing network addresses
- Fetching named data at network layer is
  - Demanded by new apps and network scenarios
  - enabled by technology advances
- Networking by app defined data names enables NDN
  - Securing data directly → remove dependency on intermediaries
  - Using semantic names of both data & keys to reason security policies, automate crypto management and operations
  - Increasing data availability via
    - host multihoming
    - Multipath forwarding
    - Multicast delivery
    - Pervasive in-network storage
    - Delay/disruption tolerance



NDN as a new Internet protocol architecture to meet the military communication challenges

#### Further readings



- 1. An Overview of Security Support in Named Data Networking, IEEE Communications Magazine, November 2018.
- 2. Opportunities and Challenges for Named Data Networking to Increase the Agility of Military Coalitions
  Proceedings of Workshop on Distributed Analytics
  Infrastructure and Algorithms for Multi-Organization
  Federations (DAIS), 2017.
- 3. <u>Schematizing Trust in Named Data Networking</u>, ACM ICN 2015
- 4. NAC: Automating Access Control via Named Data, IEEE MILCOM 2018
- 5. The Story of ChronoShare, or How NDN Brought Distributed Secure File Sharing Back, IEEE MASS 2015 Workshop on Content Centric Networking

#### Backup slides

## Name confidentiality, double layer encryption



"Realizing a Virtual Private Network using Named Data Networking",

**ACM ICN 2017** 

#### Conclusions and Future Directions

Raytheon BBN Technologies

- Considering the classic IP VPN security question, applied to NDN, we provide evidence that:
  - A relatively straightforward NDN-in-NDN analogy provides all of the standard NDN benefits while gaining much of the needed security for VPNs
  - Most VPN security holes within NDN-in-NDN, resulting from IP and NDN differences, can be solved
  - Some security concerns are difficult, and often require a tradeoff between privacy and scalability
- Future directions:
  - Name obfuscation, balancing privacy and scalability
  - Detailed traffic analysis of NDN-in-NDN
  - Implement an NDN-in-NDN prototype